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Today we’re talking about Serre’s open image theorem, which is a result about the Galois rep-
resentations associated to elliptic curves (without complex multiplication). We essentially follow
the master’s thesis of Can Ozan Oguz, entitled Galois Representations Attached to Elliptic Curves.

First let’s recall how these Galois representations are made (and other definitions we’ll need).

1 Definitions

Let E be an elliptic curve over a number field K. As an abelian variety it has distinguished
morphisms, defined over the base field K, given by “multiplication by integers” in the group law:

[n] : E→ E

P 7→ nP.

This shows that Z ⊂ EndK(E). If there are other endomorphisms over K, i.e. EndK(E) 6= Z, then
E is said to have complex multiplication (or CM) over K. It can also happen that EndK(E) = Z, but
that E has more endomorphims defined over some extension L of K, i.e. EndL(EL) 6= Z; in this
case E has complex multiplication over L.

Example: the curve y2 = x3 − x is defined over Q, has no CM over Q, but does have CM over
Q(i) on account of the extra automorphism (x, y) 7→ (−x, iy).

Now let’s recall the Tate module. The kernel E[n] of the multiply by n map (on K-points, let’s
say) consists of the n-torsion points of E, and is isomorphic to (Z/n)2. Fixing a prime `, we have
an inverse system

· · · −→ E[`3]
`−→ E[`2]

`−→ E[`],

whose limit T`E we call the `-adic Tate module of E. Each E[`n] is a (rank-2 free) module over Z/`n,
so T`E is a (rank 2 free) module over lim←−Z/`n = Z`.

Furthermore, the K-points of E get an action by Gal(K/K) = GK, and the group law is rational
so n-torsion points are sent to n-torsion points. This induces an action of GK on T`E ∼= Z2

` , i.e. a
representation

GK → GL2 Z` ⊂ GL2 Q`.

This is continuous because it comes from actions on the finite quotients.
Recall: if E has no complex multiplication, then V`E = T`E ⊗Z`

Q` is an irreducible GK-
representation for all `, and E[`] is an irreducible GK-representation for almost all `.

State Serre’s open image theorem.
Shows the Galois reps we get are interesting.
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2 Inertia Groups

Let K be a local field with residue characteristic p, I = Gal(Ksep/Knr) its inertia group, Ip =
Gal(Ksep/Kt) its wild inertia group, and It = I/Ip = Gal(Kt/Knr) its tame inertia group.

Proposition 1. Let
ρ : GK → GL(V)

be a finite dimensional representation over a characteristic p field. If ρ is semisimple, then ρ(Ip) = 1.

Now we determine It. If π is a uniformizer of Knr and (d, p) = 1, then Knr(π1/d) is a tamely
ramified extension with Galois group (Z/d)×. Furthermore, Kt is the union of such extensions,
so

It = Gal(Kt/Knr) = lim←−Gal(Knr(π1/d), Knr) = lim←−(Z/d)×

for (d, p) = 1.
The continuous characters It → (F

sep
p )∗ are precisely the powers of the characters It →

(Z/d)∗ = µd ⊂ (F
sep
p )∗.

This stuff allows us to determine what the image of the tame inertia group will be like in
representations associated to elliptic curves.

Let E be an elliptic curve over a finite extension K/Qp, E the reduction over the residue field
k. Suppose that E is good and has non-zero j-invariant (i.e. height 1). Then E[p] has order p, and
the kernel Xp of the reduction map E[p] → E[p] has order p. The action of GK fixes Xp, so the

image of GK in Aut(E[p]) = GL2 Fp is contained in the Borel subgroup
(
∗ ∗
0 ∗

)
(for some suitable

choice of basis). The wild inertia Ip is contained in the unipotent subgroup
(

1 ∗
0 1

)
, and so It acts

on Xp by a character χx and acts on E[p] by a character χy.

Proposition 2. χx is the eth power of the character It → µp−1 ⊂ (F
sep
p )∗ (e being the ramification degree

of K over Qp), and χy is the trivial character.

Corollary 3. Suppose that K is unramified. Then the image of I in Aut(E[p]) = GL2 Fp is either
(
∗ 0
0 1

)
or

(
∗ ∗
0 1

)
, corresponding as Ip acts trivially on E[p] or not.

3 `-adic Representations

Let K be a number field.
An `-adic representation of GK is a continuous representation ρ : GK → GLn(Q`). Recall that

ρ is said to be unramified at a place v of K if ρ(Iw) = 1 for any place w of K extending v.
If ρ is unramified at a finite place v of K, then we can speak of the image of Frobv in GLn Q`,

which has a characteristic polynomial Pv,ρ(T).
An `-adic representation ρ is said to be rational if there exists a finite subset S of finite places

of K such that for v /∈ S, ρ is unramified at v and Pv,ρ(T) ∈ Q[T].
Let `, `′ be primes, and ρ, ρ′ rational `, `′-adic representations of GK. The ρ, ρ′ are said to

be compatible if there is a finite subset S of finite places of K such that for v /∈ S, ρ and ρ′ are
unramified at v and Pv,ρ(T) = Pv,ρ′(T).

A system (ρ`) of `-adic representations for each ` is compatible if they are pairwise compatible
in the above sense.
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4 The Algebraic Group Sm

Let’s recall Weil restriction. If X is a variety over a number field K, then we define the Weil
restriction ResK/Q X of X from K to Q by setting, for any Q-algebra A,

ResK/Q X(A) = X(A⊗Q K).

If X is affine or projective this is representable, and thus gives a variety over Q.
Let m be a modulus of K, Cm = CK/Um the ray class group of modulus m, and T =

ResK/Q Gm,K. T is a torus of dimension [K : Q].
The ray class group Cm sits in an exact sequence

1→ K∗/(O∗K ∩Um)→ A∗K/Um → Cm → 1.

Also O∗K ∩Um is a subgroup of T, and we denote by Tm the quotient of T by (the Zariski closure
of) this subgroup.

Now we have a diagram
K∗/(O∗K ∩Um) //

��

A∗K/Um

Tm(Q)

and we define Sm to be the universal thing in the bottom right corner with Q-points making the
diagram commute (which can be described pretty explicitly, but we won’t). Then in fact the above
diagram extends to

1 // K∗/(O∗K ∩Um) //

��

A∗K/Um
//

��

Cm
//

��

1

1 // Tm(Q) // Sm(Q) // Cm
// 1

where the Cm in the bottom row is the constant group scheme. Note that Sm is commutative.
Now we want to define some `-adic representations coming from Sm. First of all, from the

diagram we have a morphism

β : A∗K → A∗K/Um → Sm(Q).

Also, note that T(Q`) = (K⊗Q Q`)
× = ∏v|` K×v is a quotient of A∗K, so we get a morphism

α : A∗K → T(Q`)→ Sm(Q`)

also using the diagram. Now define ε : A∗K → Sm(Q`) by ε(x) = β(x)α(x−1). Since this is trivial
on K∗ it factors through the idele class group CK = A∗K/K∗; since Sm(Q`) is totally disconnected,
it also factors through CK/DK where DK is the connected component of the identity. Now CK/DK
can be identified with Gal(Kab/K), so we get a morphism

ε : Gal(Kab/K)→ Sm(Q`).

Finally we obtain `-adic representations of GK by composing ε above with GK → Gal(Kab/K)
and any character Sm → Q

∗
` .
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5 Serre’s Open Image Theorem

Theorem. Let E be an elliptic curve without complex multiplication over K, and

φ` : GK → Aut(E[`]) = GL2 F`

the representation of GK on the `-torsion of E. Then φ` is surjective for almost all `.

We now sketch the proof. We assume there are infinitely many ` for which φ` is not surjective,
and show that E must have complex multiplication. There are four main steps:

1. Use our knowledge of the inertia subgroups of G and subgroups of GL2 Z` to show that if
φ` is not surjective, then

(a) φ`(GK) is contained in a Borel subgroup
(
∗ ∗
0 ∗

)
or a Cartan subgroup

(
∗ 0
0 ∗

)
; or

(b) φ`(GK) is contained in the normalizer N` of a Cartan subgroup C` but not in C`.

2. Show that the second case implies E has complex multiplication: a Cartan subgroup C has
index 2 in its normalizer N, so we get a map GK → N → N/C ∼= {±1} corresponding to a
quadratic extension L of K.

Lemma 4. This quadratic extension is unramified.

We know there are only finitely many unramified quadratic extensions of K, so if we produce
infinitely many there must be one the occurs infinitely often; call such a one K′.

Lemma 5. If a place v of K is inert in K′ and E has good reduction at v, then the reduced curve Ev
has zero j-invariant (i.e. height 2).

By Chebotarev density, the set of inert places in a quadratic extension has density 1/2 (and
bad reduction happens finitely many times, so doesn’t change this); but if E has no complex
multiplication, then the set of places for which the reduction has zero j-invariant has density
0. This implies E has complex multiplication.

3. Assuming the first case, show that our representations are isomorphic to a system of repre-
sentations arising from the algebraic group Sm, and therefore are abelian.

A Borel or Cartan subgroup always fixes a line, so in the first case the semi-simplification of
our representation will be abelian, i.e. the direct sum of two characters. Use this somehow to
show that the original representations are isomorphic to a system of representations arising
from Sm.

4. Conclude that E has complex multiplication, maybe because abelian implies reducible and
we’ve seen that curves without CM give irreducible representations.
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